上篇介绍了 ByteBuf 的简单读写操作以及读写指针的基本介绍,本文继续对 ByteBuf 的基本操作进行解读。
读写指针回滚
这里的 demo 例子还是使用上节使用的。
1 | ByteBuf buf = Unpooled.buffer(15); |
进入 readBytes 方法,可以看到每次读取的时候,指针是累加的,如图:
但是,有时我们可能需要对当前操作进行回滚,让指针回到之前的位置。这时,mark 和 reset 搭配使用,可以实现该操作需求。
mark 用来记录可能需要回滚的当前位置,reset 是将指针回滚至 mark 记录的值。
比如,接着面的 demo,再读取三个字节,然后回滚读取三个字节的操作。
1 | buf.markReaderIndex(); |
先将读索引进行 mark,然后读取内容,在调用读取的 reset,指针索引如下:
读指针累加到 7 后,又重新回滚至 4 的位置。
同样,写指针也是如此操作进行回滚。所以 mark 和 reset 都有一个读和写。
以及
读写指针清空
将读写指针清为初始值,使用 clear() 函数。
1 | ByteBuf buf = Unpooled.buffer(15); |
执行结果:
clear 只会将指针的位置重置为初始值,并不会清空缓冲区里的内容,如下图。同时,也可使用 mark 和 reset 进行验证,这里不再进行演示。
查找字符位置
查找字符是在很多场景下,都会使用到,比如前面文章讲过的粘包/拆包处理,就有根据字符串进行划分包数据。其实现原理就是根据查找指定字符进行读取。
ByteBuf 也提供多种不同的查找方法进行处理:
indexOf
indexOf 函数,拥有三个参数,查找开始位置索引 fromIndex
, 查询位置最大的索引 toIndex
,查找字节 value
。
1 | // fromIndex 为 0, toIndex 为 13, value 为 a |
在索引 0~13 中返回查找的字符 a 索引位置:
indexOf 源码实现:
1 | // ByteBuf 实现类 |
bytesBefore
bytesBefore 函数拥有三个重载方法:
bytesBefore 函数的实现,就是在 indexOf 上进行一层查找区间的封装,最后都是在 indexOf 中实现查找。
1 |
|
注意:这里返回的是相对查找起始索引的位置。
forEachByte
forEachByte 函数有两个重载方法:
这里涉及到一个 ByteBufProcessor 接口,这个是对一些常用的字节,其中包括 空,空白键,换行等等进行了抽象定义。
forEachByte 函数实现主要逻辑:
1 | private int forEachByteAsc0(int index, int length, ByteBufProcessor processor) { |
forEachByteDesc
forEachByteDesc 也是有两个重载方法:
forEachByteDesc 从函数名字可以看出,指的倒序查找。意指从查找区间最大索引到最小索引进行遍历:
1 | private int forEachByteDesc0(int index, int length, ByteBufProcessor processor) { |
查找操作的具体实现还是比较好理解,进入代码查看实现一般都能读懂。
复制
ByteBuf 复制后会生成一个新的 ByteBuf 对象。
copy() 整个对象被复制,其所有数据都是该对象自身维护,与旧对象无任何关联关系。包括缓冲区内容,但是该方法的的容量默认为旧 buf 的可读区间大小,读索引为 0,写索引为旧数据写索引的值。
1 | ByteBuf buf2 = buf.copy(); |
执行结果:
copy(int index, int length) 为指定复制的起始位置及长度,其他与上面 copy() 类似。
duplicate() 这个也是复制,但是与 copy 函数不同的是,复制后生成的 ByteBuf 和旧的 ByteBuf 是共享一份缓冲区内容的。它复制的只是自己可以单独维护的一份索引。并且它复制的默认容量也是和旧的一样。
对象引用/回收
ByteBuf 对象被引用后,可以调用 retain() 函数进行累计计数。每调用一次 retain() 则会 +1。
其在 AbstractReferenceCountedByteBuf 实现:
1 |
|
同样,可以进行添加多个引用,自己指定数量,retain(int increment) 带参函数实现,和上面 +1 实现思路一样,代码就不贴出来了。
ByteBuf 在申请内存使用完后,需要对其进行释放,否则可能会造成资源浪费及内存泄漏的风险。这也是 ByteBuf 自己实现的一套有效回收机制。
释放的函数为 **release()**,它的实现就是每次 -1。直到为 1 时,调用释放函数 deallocate() 进行释放。
其在 AbstractReferenceCountedByteBuf 实现:
1 |
|
同样,释放也支持一次释放多个引用数量,也是通过指定数量,传递给 release(int decrement) 进行引用数量的减少并释放对象。
总结
本文对 ByteBuf 中最基本,最常用 API 进行的解读,这也是在实际开发中或阅读相关代码时,可能会遇到的基本 API,通过两篇文章的说明,相信对 ByteBuf 的基本使用不会存在太大问题,还有些未分析到的 API,根据自己对 ByteBuf 已有的理解,差不多也能进行分析。